1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
| from dataclasses import dataclass from decimal import Decimal, getcontext from enum import Enum, auto import math from typing import Self
getcontext().prec = 100 PI = Decimal(314159265_358979323846264_338327950288_419716939937510) / Decimal(10**50)
_epsilon_exponent = max(1, getcontext().prec - 20) EPSILON = Decimal("1e-" + str(_epsilon_exponent))
@dataclass class Vector: x: Decimal y: Decimal
def __add__(self, other): if not isinstance(other, Vector): return NotImplemented return Vector(self.x + other.x, self.y + other.y)
def __sub__(self, other): if not isinstance(other, Vector): return NotImplemented return Vector(self.x - other.x, self.y - other.y)
def __mul__(self, other): if isinstance(other, (int, float, Decimal)): return Vector(self.x * other, self.y * other) raise TypeError("Multiplication is only supported with a scalar.")
def __truediv__(self, other): if isinstance(other, (int, float, Decimal)): if other == 0: raise ZeroDivisionError("Cannot divide vector by zero.") return Vector(self.x / other, self.y / other) raise TypeError("Division is only supported by a scalar.")
def __neg__(self): return Vector(-self.x, -self.y)
def __str__(self): return f"({self.x}, {self.y})"
def __repr__(self): return f"Vector({self.x}, {self.y})"
def __eq__(self, other: Self): if not isinstance(other, Vector): return NotImplemented return self.x == other.x and self.y == other.y
def cross_product(self, other: Self) -> Decimal: """计算二维叉积 (self x other)""" if not isinstance(other, Vector): raise TypeError("Cross product is only supported between two Vectors.") return self.x * other.y - self.y * other.x
def dot_product(self, other: Self) -> Decimal: """计算二维点积 (self . other)""" if not isinstance(other, Vector): raise TypeError("Dot product is only supported between two Vectors.") return self.x * other.x + self.y * other.y
def magnitude(self) -> Decimal: """计算向量的模长""" return (self.x**2 + self.y**2).sqrt()
def normalized(self) -> Self: """返回单位向量""" magnitude = self.magnitude() if magnitude == 0: raise ZeroDivisionError("Cannot normalize a zero vector.") return Vector(self.x / magnitude, self.y / magnitude)
def angle(self, other: Self) -> Decimal: """计算两个向量之间的夹角 (弧度)""" if not isinstance(other, Vector): raise TypeError("Angle calculation is only supported between two Vectors.")
mag_self = self.magnitude() mag_other = other.magnitude()
if mag_self == 0 or mag_other == 0: raise ValueError("Cannot calculate angle with a zero vector.")
dot_prod = self.dot_product(other) cos_theta = dot_prod / (mag_self * mag_other)
cos_theta = max(Decimal("-1"), min(Decimal("1"), cos_theta))
return Decimal(math.acos(cos_theta))
def angle_signed(self, other: Self) -> Decimal: """ 计算从 self 到 other 的有向夹角 (弧度) """ if not isinstance(other, Vector): raise TypeError( "Signed angle calculation is only supported between two Vectors." )
mag_self = self.magnitude() mag_other = other.magnitude()
if mag_self == 0 or mag_other == 0: raise ValueError("Cannot calculate signed angle with a zero vector.")
cross_prod = self.cross_product(other) dot_prod = self.dot_product(other)
if abs(dot_prod) < EPSILON and abs(cross_prod) < EPSILON: raise ValueError("Cannot calculate angle with a zero vector.")
if abs(dot_prod) < EPSILON: if cross_prod > 0: return PI / 2 elif cross_prod < 0: return -PI / 2 else: return Decimal(0) else: angle_val = Decimal(math.atan(cross_prod / dot_prod)) if dot_prod < 0: if cross_prod >= 0: angle_val += PI else: angle_val -= PI return angle_val
def __abs__(self) -> Decimal: return self.Magnitude()
def rotate(self, angle: Decimal) -> Self: """ 将向量绕原点旋转指定角度 (弧度) """ cos_a = Decimal(math.cos(angle)) sin_a = Decimal(math.sin(angle)) new_x = self.x * cos_a - self.y * sin_a new_y = self.x * sin_a + self.y * cos_a return Vector(new_x, new_y)
@dataclass class Point: x: Decimal y: Decimal
def __sub__(self, other: "Point") -> Vector: """两点相减得到一个向量。""" if not isinstance(other, Point): return NotImplemented return Vector(self.x - other.x, self.y - other.y)
def __add__(self, other: Vector) -> "Point": """点与向量相加得到一个新点。""" if not isinstance(other, Vector): return NotImplemented return Point(self.x + other.x, self.y + other.y)
def __eq__(self, other: Self) -> bool: if not isinstance(other, Point): return NotImplemented return self.x == other.x and self.y == other.y
def __str__(self) -> str: return f"({self.x}, {self.y})"
def __repr__(self) -> str: return f"Point({self.x}, {self.y})"
@dataclass class Line: p: Point v: Vector
def is_point_on_line(self, q: Point) -> bool: """ 检查点 Q 是否在直线上 """ if not isinstance(q, Point): raise TypeError("Input q must be a Point.")
pq_vector = q - self.p
cross_prod_val = pq_vector.cross_product(self.v)
return abs(cross_prod_val) < EPSILON
def distance_to_point(self, q: Point) -> Decimal: """ 计算点 Q 到直线的距离 """ if not isinstance(q, Point): raise TypeError("Input q must be a Point.")
pq_vector = q - self.p v_magnitude_squared = self.v.x**2 + self.v.y**2
if v_magnitude_squared == 0: return ((q.x - self.p.x) ** 2 + (q.y - self.p.y) ** 2).sqrt()
distance = abs(pq_vector.cross_product(self.v)) / v_magnitude_squared.sqrt() return distance
def intersection(self, other: Self) -> Point | None: """ 计算两条直线的交点 """ if not isinstance(other, Line): raise TypeError("Input other must be a Line.")
cross_prod_v = self.v.cross_product(other.v)
if abs(cross_prod_v) < EPSILON: if abs((other.p - self.p).cross_product(self.v)) < EPSILON: return None else: return None
t_numerator = (other.p - self.p).cross_product(other.v) t = t_numerator / cross_prod_v
intersection_point = self.p + self.v * t
return intersection_point
def is_parallel_to(self, other: Self) -> bool: """ 检查两条直线是否平行 """ if not isinstance(other, Line): raise TypeError("Input other must be a Line.")
cross_prod_v = self.v.cross_product(other.v)
return abs(cross_prod_v) < EPSILON
def get_perpendicular_line_through_point(self, q: Point) -> Self: """ 获取通过点 Q 且垂直于当前直线的直线 """ if not isinstance(q, Point): raise TypeError("Input q must be a Point.")
v_perp = Vector(-self.v.y, self.v.x)
if self.v.x == 0 and self.v.y == 0: raise ValueError("Cannot get perpendicular line from a zero vector line.")
return Line(q, v_perp)
def is_coincident_with(self, other: Self) -> bool: """ 检查两条直线是否重合 """ if not isinstance(other, Line): raise TypeError("Input other must be a Line.")
if not self.is_parallel_to(other): return False
return abs((other.p - self.p).cross_product(self.v)) < EPSILON
def __contains__(self, point: Point) -> bool: return self.is_point_on_line(point)
def __eq__(self, value: Self): if not isinstance(value, Line): return NotImplemented return self.p == value.p and self.v == value.v
@dataclass class Polygon: points: list[Point]
def area(self) -> Decimal: """计算多边形的面积""" n = len(self.points) if n < 3: return Decimal(0)
area = Decimal(0)
for i in range(n): p1 = self.points[i] p2 = self.points[(i + 1) % n]
area += p1.x * p2.y area -= p1.y * p2.x
return abs(area) / Decimal(2)
def is_convex(self) -> bool: """ 检查多边形是否为凸多边形 """ n = len(self.points) if n < 3: return True
v1 = self.points[1] - self.points[0] v2 = self.points[2] - self.points[1] first_cross_product = v1.cross_product(v2)
for i in range(n): p1 = self.points[i] p2 = self.points[(i + 1) % n] p3 = self.points[(i + 2) % n]
vec1 = p2 - p1 vec2 = p3 - p2
current_cross_product = vec1.cross_product(vec2)
if first_cross_product > 0 and current_cross_product < 0: return False if first_cross_product < 0 and current_cross_product > 0: return False
if first_cross_product == 0 and current_cross_product != 0: first_cross_product = current_cross_product return True
def __contains__(self, point: Point) -> bool: """ 检查点是否在多边形内,包括边界和顶点 """ if not isinstance(point, Point): raise TypeError("Input point must be a Point.")
n = len(self.points) if n < 3: return False
crossings = 0 for i in range(n): p1 = self.points[i] p2 = self.points[(i + 1) % n]
if (p1.y <= point.y < p2.y) or (p2.y <= point.y < p1.y): x_at_y = p1.x + (point.y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) if point.x < x_at_y: crossings += 1
return crossings % 2 == 1
class CirclePos(Enum): INTERSECT = auto() TANGENT = auto() DISJOINT = auto() CONTAINS = auto() CONTAINED_BY = auto() EQUAL = auto()
@dataclass class Circle: center: Point radius: Decimal
def area(self) -> Decimal: return PI * self.radius**2
def circumference(self) -> Decimal: return 2 * PI * self.radius
def intersection_with_line(self, line: Line) -> list[Point]: """ 计算圆和直线的交点 """ if not isinstance(line, Line): raise TypeError("Input line must be a Line.")
pc_vector = self.center - line.p
v_magnitude_squared = line.v.x**2 + line.v.y**2
if v_magnitude_squared == 0: raise ValueError("Line direction vector cannot be zero.")
distance_to_line = ( abs(pc_vector.cross_product(line.v)) / v_magnitude_squared.sqrt() )
if distance_to_line > self.radius + EPSILON: return [] elif abs(distance_to_line - self.radius) <= EPSILON: dot_product_pc_v = pc_vector.x * line.v.x + pc_vector.y * line.v.y t = dot_product_pc_v / v_magnitude_squared tangent_point = line.p + line.v * t return [tangent_point] else: dot_product_pc_v = pc_vector.x * line.v.x + pc_vector.y * line.v.y t_closest = dot_product_pc_v / v_magnitude_squared closest_point_on_line = line.p + line.v * t_closest
distance_from_closest_to_intersection_squared = ( self.radius**2 - distance_to_line**2 )
if distance_from_closest_to_intersection_squared < 0: distance_from_closest_to_intersection = Decimal(0) else: distance_from_closest_to_intersection = ( distance_from_closest_to_intersection_squared.sqrt() )
v_magnitude = v_magnitude_squared.sqrt() if v_magnitude == 0: raise ValueError("Line direction vector cannot be zero.")
unit_v = line.v / v_magnitude
intersection1 = ( closest_point_on_line + unit_v * distance_from_closest_to_intersection ) intersection2 = ( closest_point_on_line - unit_v * distance_from_closest_to_intersection )
return [intersection1, intersection2]
def intersection_with_circle(self, other: Self) -> list[Point]: """ 计算两个圆的交点 """ if not isinstance(other, Circle): raise TypeError("Input other must be a Circle.")
if self.center == other.center: if self.radius == other.radius: return [] else: return []
distance_between_centers = (self.center - other.center).magnitude()
sum_of_radii = self.radius + other.radius diff_of_radii = abs(self.radius - other.radius)
if distance_between_centers > sum_of_radii + EPSILON: return [] elif abs(distance_between_centers - sum_of_radii) <= EPSILON: direction_vector = (other.center - self.center).normalized() intersection_point = self.center + direction_vector * self.radius return [intersection_point] elif distance_between_centers < diff_of_radii - EPSILON: return [] elif abs(distance_between_centers - diff_of_radii) <= EPSILON: direction_vector = (other.center - self.center).normalized() intersection_point = self.center + direction_vector * self.radius return [intersection_point] else: cx1, cy1 = self.center.x, self.center.y cx2, cy2 = other.center.x, other.center.y r1, r2 = self.radius, other.radius
A = 2 * (cx2 - cx1) B = 2 * (cy2 - cy1) C = (r1**2 - r2**2) - (cx1**2 - cx2**2) - (cy1**2 - cy2**2)
if abs(B) < EPSILON: if abs(A) < EPSILON: return []
x_val = C / A discriminant = r1**2 - (x_val - cx1) ** 2
if discriminant < -EPSILON: return [] elif abs(discriminant) <= EPSILON: y_val = cy1 return [Point(x_val, y_val)] else: y1 = cy1 + discriminant.sqrt() y2 = cy1 - discriminant.sqrt() return [Point(x_val, y1), Point(x_val, y2)] else: a = 1 + (A / B) ** 2 k = C / B - cy1 b = -2 * (cx1 + k * (A / B)) c = cx1**2 + k**2 - r1**2
discriminant = b**2 - 4 * a * c
if discriminant < -EPSILON: return [] elif abs(discriminant) <= EPSILON: x_val = -b / (2 * a) y_val = (C - A * x_val) / B return [Point(x_val, y_val)] else: x1 = (-b + discriminant.sqrt()) / (2 * a) x2 = (-b - discriminant.sqrt()) / (2 * a) y1 = (C - A * x1) / B y2 = (C - A * x2) / B return [Point(x1, y1), Point(x2, y2)]
def relationship_with_point(self, point: Point) -> CirclePos: """确定圆和点的关系""" if not isinstance(point, Point): raise TypeError("Input point must be a Point.")
distance_squared = (point.x - self.center.x) ** 2 + ( point.y - self.center.y ) ** 2 radius_squared = self.radius**2
if distance_squared > radius_squared + EPSILON: return CirclePos.DISJOINT elif abs(distance_squared - radius_squared) <= EPSILON: return CirclePos.TANGENT else: return CirclePos.INTERSECT
def relationship_with_line(self, line: Line) -> CirclePos: """确定圆和直线的关系""" if not isinstance(line, Line): raise TypeError("Input line must be a Line.")
distance_to_line = self.distance_to_point(line)
if distance_to_line > self.radius + EPSILON: return CirclePos.DISJOINT elif abs(distance_to_line - self.radius) <= EPSILON: return CirclePos.TANGENT else: return CirclePos.INTERSECT
def relationship_with_circle(self, other: Self) -> list[CirclePos]: """确定两个圆的关系""" if not isinstance(other, Circle): raise TypeError("Input other must be a Circle.")
distance_between_centers = (self.center - other.center).magnitude()
sum_of_radii = self.radius + other.radius diff_of_radii = abs(self.radius - other.radius)
if distance_between_centers > sum_of_radii + EPSILON: return [CirclePos.DISJOINT] elif abs(distance_between_centers - sum_of_radii) <= EPSILON: return [CirclePos.TANGENT] elif distance_between_centers < diff_of_radii - EPSILON: if self.radius > other.radius: return [CirclePos.CONTAINS] elif other.radius > self.radius: return [CirclePos.CONTAINED_BY] else: return [CirclePos.EQUAL] elif abs(distance_between_centers - diff_of_radii) <= EPSILON: return [CirclePos.TANGENT, CirclePos.CONTAINS] else: return [CirclePos.INTERSECT]
def intersection_area_with_circle(self, other: Self) -> Decimal: """ 计算两个圆的相交面积
""" if not isinstance(other, Circle): raise TypeError("Input other must be a Circle.")
if self.center == other.center: if self.radius == other.radius: return self.area() else: return min(self.area(), other.area())
distance_between_centers = (self.center - other.center).magnitude()
sum_of_radii = self.radius + other.radius diff_of_radii = abs(self.radius - other.radius)
if distance_between_centers > sum_of_radii + EPSILON: return Decimal(0) elif abs(distance_between_centers - sum_of_radii) <= EPSILON: return Decimal(0) elif distance_between_centers < diff_of_radii - EPSILON: return min(self.area(), other.area()) elif abs(distance_between_centers - diff_of_radii) <= EPSILON: return min(self.area(), other.area()) else: r1, r2 = self.radius, other.radius d = distance_between_centers
if d == 0: if r1 == r2: return self.area() else: return min(self.area(), other.area())
arg1 = (r1**2 + d**2 - r2**2) / (2 * r1 * d) arg2 = (r2**2 + d**2 - r1**2) / (2 * r2 * d)
if abs(arg1) > 1: arg1 = Decimal(1) if arg1 > 1 else Decimal(-1) if abs(arg2) > 1: arg2 = Decimal(1) if arg2 > 1 else Decimal(-1)
theta1 = Decimal(math.acos(arg1)) theta2 = Decimal(math.acos(arg2))
return r1**2 * theta1 + r2**2 * theta2 - d * r1 * Decimal(math.sin(theta1))
def __contains__(self, point: Point) -> bool: """检查点是否在圆内""" if not isinstance(point, Point): raise TypeError("Input point must be a Point.") distance_squared = (point.x - self.center.x) ** 2 + ( point.y - self.center.y ) ** 2 return distance_squared <= self.radius**2
|